88 research outputs found

    The one-round Voronoi game replayed

    Get PDF
    We consider the one-round Voronoi game, where player one (``White'', called ``Wilma'') places a set of n points in a rectangular area of aspect ratio r <=1, followed by the second player (``Black'', called ``Barney''), who places the same number of points. Each player wins the fraction of the board closest to one of his points, and the goal is to win more than half of the total area. This problem has been studied by Cheong et al., who showed that for large enough nn and r=1, Barney has a strategy that guarantees a fraction of 1/2+a, for some small fixed a. We resolve a number of open problems raised by that paper. In particular, we give a precise characterization of the outcome of the game for optimal play: We show that Barney has a winning strategy for n>2 and r>sqrt{2}/n, and for n=2 and r>sqrt{3}/2. Wilma wins in all remaining cases, i.e., for n>=3 and r<=sqrt{2}/n, for n=2 and r<=sqrt{3}/2, and for n=1. We also discuss complexity aspects of the game on more general boards, by proving that for a polygon with holes, it is NP-hard to maximize the area Barney can win against a given set of points by Wilma.Comment: 14 pages, 6 figures, Latex; revised for journal version, to appear in Computational Geometry: Theory and Applications. Extended abstract version appeared in Workshop on Algorithms and Data Structures, Springer Lecture Notes in Computer Science, vol.2748, 2003, pp. 150-16

    Domino Tatami Covering is NP-complete

    Full text link
    A covering with dominoes of a rectilinear region is called \emph{tatami} if no four dominoes meet at any point. We describe a reduction from planar 3SAT to Domino Tatami Covering. As a consequence it is NP-complete to decide whether there is a perfect matching of a graph that meets every 4-cycle, even if the graph is restricted to be an induced subgraph of the grid-graph. The gadgets used in the reduction were discovered with the help of a SAT-solver.Comment: 10 pages, accepted at The International Workshop on Combinatorial Algorithms (IWOCA) 201

    Grid-Obstacle Representations with Connections to Staircase Guarding

    Full text link
    In this paper, we study grid-obstacle representations of graphs where we assign grid-points to vertices and define obstacles such that an edge exists if and only if an xyxy-monotone grid path connects the two endpoints without hitting an obstacle or another vertex. It was previously argued that all planar graphs have a grid-obstacle representation in 2D, and all graphs have a grid-obstacle representation in 3D. In this paper, we show that such constructions are possible with significantly smaller grid-size than previously achieved. Then we study the variant where vertices are not blocking, and show that then grid-obstacle representations exist for bipartite graphs. The latter has applications in so-called staircase guarding of orthogonal polygons; using our grid-obstacle representations, we show that staircase guarding is \textsc{NP}-hard in 2D.Comment: To appear in the proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    3D Visibility Representations of 1-planar Graphs

    Full text link
    We prove that every 1-planar graph G has a z-parallel visibility representation, i.e., a 3D visibility representation in which the vertices are isothetic disjoint rectangles parallel to the xy-plane, and the edges are unobstructed z-parallel visibilities between pairs of rectangles. In addition, the constructed representation is such that there is a plane that intersects all the rectangles, and this intersection defines a bar 1-visibility representation of G.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Visibility Representations of Boxes in 2.5 Dimensions

    Full text link
    We initiate the study of 2.5D box visibility representations (2.5D-BR) where vertices are mapped to 3D boxes having the bottom face in the plane z=0z=0 and edges are unobstructed lines of sight parallel to the xx- or yy-axis. We prove that: (i)(i) Every complete bipartite graph admits a 2.5D-BR; (ii)(ii) The complete graph KnK_n admits a 2.5D-BR if and only if n≤19n \leq 19; (iii)(iii) Every graph with pathwidth at most 77 admits a 2.5D-BR, which can be computed in linear time. We then turn our attention to 2.5D grid box representations (2.5D-GBR) which are 2.5D-BRs such that the bottom face of every box is a unit square at integer coordinates. We show that an nn-vertex graph that admits a 2.5D-GBR has at most 4n−6n4n - 6 \sqrt{n} edges and this bound is tight. Finally, we prove that deciding whether a given graph GG admits a 2.5D-GBR with a given footprint is NP-complete. The footprint of a 2.5D-BR Γ\Gamma is the set of bottom faces of the boxes in Γ\Gamma.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016
    • …
    corecore